Improving Upon a Geometric Inequality of Third Order

نویسندگان

  • Toufik Mansour
  • Mark Shattuck
  • M. Shattuck
چکیده

We show that the best possible positive constant k in a certain geometric inequality of third order lies in the interval [0.14119, 0.14364], which improves upon a previous known result where k = 0. We also consider a comparable question concerning a fourth order version of the inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Improving Linearity of CMOS Variable-gain Amplifier Using Third-order Intermodulation Cancellation Mechanism and Intermodulation Distortion Sinking Techniques

This paper presents an improved linearity variable-gain amplifier (VGA) in 0.18-µm CMOS technology. The lineari­ty improvement is resulted from employing a new combinational technique, which utilizes third-order-intermodulation (IM3) cancellation mechanism using second-order-intermodul­ation (­IM2) injection, and intermodulation distortion (IMD) sinking techniques. The proposed VGA gain cell co...

متن کامل

A unifying geometric solution framework and complexity analysis for variational inequalities

In this paper, we propose a concept of polynomiality for variational inequality problems and show how to find a near optimal solution of variational inequality problems in a polynomial number of iterations. To establish this result we build upon insights from several algorithms for linear and nonlinear programs (the ellipsoid algorithm, the method of centers of gravity, the method of inscribed ...

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012